

Barker College

2006 TRIAL HIGHER SCHOOL CERTIFICATE

Mathematics

Staff Involved:

- · VAB* · JML
- RMH* EAS
- AJD
 GIC
- · LMD · LJP
- GDH CFR

155 copies

General Instructions

- Write using blue or black pen. Use pencil for diagrams.
- Write your Barker Student Number on every answer page.
- Start each question on a NEW page
- · Write on one side of the page only
- All necessary working must be shown in every question.
- Marks may be deducted for careless or badly arranged working.
- Board-approved calculators may be used.
- Diagrams are not drawn to scale.
- A table of standard integrals is provided on the last page which may be detached for your use.

AM FRIDAY 4 AUGUST

Total marks - 120

- Attempt Questions 1 10
- All questions are of equal value
- Reading time 5 minutes
- Working time 3 hours

Question 1 (12 marks)

(a) Simplify, expressing in scientific notation

1

(b) Factorise fully $2 - 16x^3$

2

(c) Solve $5 - \frac{x}{7} < 3$

2

(d) Expand and simplify $(4 - \sqrt{5})^2$

2

(e) Evaluate exactly $\cos \frac{\pi}{6}$

1

(f) Solve |4x - 5| = 15

2

(g) The sector shown below has radius 3.8 metres and arc length 10 metres.
Find angle θ correct to the nearest degree.

2

NOT TO SCALE

1

1

2

2

2

Answer by referring to the above diagram.

(i)	Find distance RQ.	1
()		

- (ii) Find the gradient of RQ.
- (iii) Find the size of angle β correct to the nearest degree.
- (iv) Show the equation of the line RQ is 4x 3y 20 = 0
- (v) Find the perpendicular distance of point P from the line RQ.
- (vi) Find the area of triangle PQR (which is not shaded).
- (vii) Point P is the midpoint of the interval RT, where T is a point not shown on the diagram. Find the coordinates of the point T.
- (viii) The shaded region which is triangle QMR can be described by three inequalities, one of which is $y \ge 0$. State the other two inequalities.

(a) Find $\frac{dy}{dx}$ given that

(i)
$$y = \log_e \left(5 + 7x^2 \right)$$

1

(ii)
$$y = \frac{\sin 3x}{x}$$

2

(b) Given $f(x) = x \sqrt{x+1}$ find f'(x) expressing your answer as a single simplified fraction.

3

(c) Find
$$\int xe^{x^2}dx$$

2

(d) Find the gradient of the tangent to the curve $y = \frac{12}{x}$ at the point (2, 6)

2

(e) The graph below shows the function y = f(x) whose domain is $x \ge 0$ Trace or copy this graph on to your writing paper.

On the same axes sketch the graph of the function y = f'(x)

(a) The triangles KSR and JWR shown below are similar. KS = 12 cm, JW = 15 cm, JR = 19 cm, RW = 13 cm. Find the length of the side SR.

2

NOT TO SCALE

(b) Find the value of x in the diagram below. Show working and give reasons.

3

Question 4 continues on the next page.

(c)

The diagram above shows a right-angled triangle ABC with \angle ABC = 90°. The point M is the midpoint of AC, and Y is the point where the perpendicular to AC at M meets BC.

(i) Show that \triangle AYM is congruent to \triangle CYM, giving reasons.

2

(ii) Suppose that it is also given that YA bisects ∠BAC.Find the size of ∠YCM and hence find the exact ratio MY: AC.

3

(d) Draw a possible sketch of a function y = f(x) which satisfies the following conditions:

- The function has domain $0 \le x < 12$
- $\lim_{x \to 12} f(x) = \infty$
- The function is monotonically increasing.
- The curve has exactly one point of inflexion. Label this point I.

Question 5 (12 marks)

[START A NEW PAGE]

- (a) Consider the curve $y = x^3 6x^2 + 12x + 2$
 - (i) Show the curve has only one stationary point, find its coordinates and determine its nature.

3

(ii) State the values of x for which the curve is concave up.

1

(iii) State the values of x for which the curve is increasing.

1

(b) Use Simpson's rule with five function values to estimate $\int_{0}^{2} \frac{1}{1+x^{2}} dx$ giving your answer correct to two decimal places.

4

(c) Solve for x:

$$\log_4 6 + \log_4 x - 3\log_4 2 = 2$$

Question 6 (12 marks)

[START A NEW PAGE]

(a) Solve $16 - x^2 > 0$

1

- (b) Find the values of k for which the equation $x^2 (k-2)x + (k+1) = 0$ has real roots.
- (c) The roots of the equation $2x^2 + 4x 1 = 0$ are α and β
 - (i) State the values of $(\alpha + \beta)$ and $\alpha \beta$

1

(ii) Evaluate $\alpha^2 \beta^2$

1

(iii) Show the value of $(\alpha^2 + \beta^2)$ is 5

1

(iv) Hence write down a quadratic equation whose roots are α^2 and β^2

1

- (d) A parabola has equation $x^2 12x = 8y 52$
 - (i) By completing the square, express the equation in the form $(x-h)^2 = 8(y-k)$

1

(ii) Hence find the coordinates of the vertex and the focus and the equation of the directrix for this parabola.

2

2

1

3

2

Question 7 [12 marks]

[START A NEW PAGE]

(a) This diagram shows a harbour (H), a yacht (Y) and a boat (B).
 The boat bears 110° from the harbour and ∠YHN is 105° as shown.
 The yacht is 9 km from the harbour and the boat is 11.5 km from harbour.

- (i) Find θ and, hence, find the distance YB (1 decimal place)
- (ii) Find ∠ HBY to the nearest degree.
- (iii) Hence, find the bearing of the yacht from the boat.
- (b) Simplify fully $\cos^2\theta (\sec \theta 1) (\sec \theta + 1)$
- (c) For the series $\cos^4\theta + \cos^4\theta \sin^2\theta + \cos^4\theta \sin^4\theta + \dots$
 - (i) Find the simplest expression for the limiting sum of the series, assuming it exists.
 - (ii) For what values of θ in the interval $0 \le \theta \le 360^{\circ}$ does the limiting sum exist? 2

Question 8 (12 marks)

[START A NEW PAGE]

(a) A function f(x) is defined as follows:

$$f(x) = \begin{cases} -5 & \text{if } x \le -1 \\ 3x - 4 & \text{if } x > -1 \end{cases}$$

Evaluate (i) f(-1) + f(-3)

1

(ii) $f(a^2)$

1

(iii) f(f(0))

1

- (b) A heavy object is dropped from a plane. During the 1st second it falls 4.9 metres.

 During the 2nd second it falls 14.7 metres. During the 3rd second it falls 24.5 metres.

 These distances continue in arithmetic progression.
 - (i) Find the distance the object falls during the 15th second.

2

(ii) Find the total distance the object has fallen after 15 seconds.

2

(c) David invested \$1200 on 1st January every year.

He was paid 6.5% per annum interest compounded annually.

(i) How much was the investment worth at the end of 15 years?

3

(ii) How many years in total would it take until the accumulated value of the investment was \$64 000?

(a) Evaluate exactly

3

(b) Sketch the curve $y = 3\sin 2x$ in the domain $0 \le x \le 2\pi$ (i)

2

(ii) On the same axes, sketch the line y = x - 3

- 1
- (iii) By referring to your sketch, state how many solutions there are to the equation $3 \sin 2x - x + 3 = 0$ (You do not need to find the solutions.)

1

- Sketch the curve $y = e^x + 1$ and shade the region bounded by (c) (i) the curve, the x-axis and the lines x = 0 and $x = \log_e 3$
- 1

4

The region in part (i) is rotated about the x-axis. (ii) Find the volume of the resulting solid of revolution. Give your answer in simplest exact form.

4

(a)

A man is in a boat at point B on a lake and AD is a straight stretch of the lake's edge. B is 3 kilometres from a point A on the river bank. The man wishes to travel from point B to point D. He intends to row in a straight line to point C and then walk to D. He can row at 4 km/h and walk at 5 km/h.

Let the distance AC be x kilometres and let the total time for the trip be T hours.

(i) Explain why
$$T = \frac{\sqrt{x^2 + 9}}{4} + \frac{6 - x}{5}$$

(ii) Find the value of x which will enable him to complete the trip in the minimum time.

Question 10 continues on the next page.

(iii)

(b) (i) Show the derivative of $(x\log_e x - x)$ is $\log_e x$

1

(ii) The diagram below shows the area bounded by the curve $y = \log_e x$, the x-axis and the line x = b, where b is some number greater than 1. Find the simplest expression for the area in terms of b.

2

If the area in part (ii) has magnitude (2b + 1) units², find the exact value of b. 2

2

(iv) Exactly one point on the curve $y = \log_e x$ has a tangent which passes through the origin. Find the coordinates of this point.

End of Paper

Q3. a) i, $y' = \frac{14x}{5+7x^2}$ a) 1.8 × 1017 b) $2(1-8x^3) = 2(1-2x)(1+2x+4x^2)$ c) 5- × <3 35 - x < 21 14 < x : x > 14 d, 16-855+5 = 21-85 e) \$3/2 $f_1 = 4x - 5 = 15$ 9x-5=-15 4x=20 4x = -10 x = 5 x= - 5 9) 1=10 10 = 3.8 = 0 $\theta = 10$ radians 0 = 10 × 180 TT 0 = 151 (newest degree) Q4. a) <u>SR = 12</u> 2. i) $RQ = \sqrt{(11-5)^2 + (8-0)^2}$ SR = 10.4cm = 1100 = 10 units ii) grad. $RQ = \frac{8-0}{11-5} = \frac{8}{6} = \frac{4}{3}$ Ym is common iii) ten B = 4/3 B = tan = 1 4/3 B = 53, (nearest degree) iv) RQ: Q(5,0) m= 4/3 $y-0=\frac{4}{3}(x-5)$ 3y = 4x - 20 3x + 90 = 190 4x-3y-20=0 V) P(2,5) RQ: 4x-3y-20=0 $-b dist = \left| \frac{4 \times 2 + (-3) \times 5 + -20}{\sqrt{4^2 + (-3)^2}} \right|$ = 27 units di vi) A = 1 × 10 × 27 = 27 sq. units $\frac{x+1}{2} = 2$, $\frac{y+8}{2} = 5$: x=-7 : y=2 T(-7,2) viii) $x \le 11$ and 4x - 3y - 20 > 0

a) i,
$$y' = \frac{14x}{5+7x^2}$$

ii, $y' = \frac{3x \cos 3x - \sin 3x}{x^2}$

b)
$$\int (x) = x \cdot \frac{1}{2} (x+1)^{-1/2} + \sqrt{x+1}$$

$$= \frac{2x}{2\sqrt{x+1}} + \frac{2\sqrt{x+1}}{2\sqrt{x+1}}$$

$$= \frac{3x+2}{2\sqrt{x+1}}$$

d)
$$y' = -\frac{12}{x^2}$$
 when $x = 2$, $y' = -3$
 $\therefore \text{ grad } = -3$.

e)
$$\uparrow y$$
 $\uparrow y$
 $\uparrow z$
 $\downarrow z$
 \downarrow

a)
$$\frac{SR = 12}{13}$$
 b) $\frac{28EA \cdot 80^{\circ}}{13}$ (sl. 2)
 $\frac{13}{15}$ 80 + $x = 3x$ (ext 2.)
 $\frac{SR = 10.4cm}{10}$ 80 = $2x$
 $\therefore x = 40^{\circ}$

c) is In DAYM - DCYM · AM = cm (given) LYMC = ZAMY (st. 4) : AAYM = ACYM (SAS)

ii) let
$$\angle YAM = \chi$$
 : $\angle BAY = \chi$ (data)
 $\angle YCM = \chi$ (corresp. \angle in Cong \triangle)
 $x + 2L + 90 + \chi = 180^{\circ}$ (\angle sum \triangle)
 $3\chi + 90 = 190$
 $\chi = 30^{\circ}$: $\angle YCM = 30^{\circ}$
 $MY = 40 + 30^{\circ} = \frac{1}{\sqrt{3}}$

$$\frac{m\gamma}{Ac} = \frac{1}{2\sqrt{3}} \quad \text{since} \quad Am = \frac{1}{2}AC.$$

 $y' = 3x^2 - 12x + 12$ led y'= 0 $3x^{2} - 12x + 12 = 0$ 3(x2-9x+4)=0 $3(x-2)^{2}=0$: x=2 one st. pt at (2,10) y" = 6x-12 when x = 2, y"=0 × 11.9 2 2.1 : horizontal y" 1-.6 0 0.6 point of inflect. y" changes sign at (2,10) ii) y">0 6x-12>0 . x>2 ii) y >0 . all x except x=2 ≈ 0 0.5 1 1 0.8 0.5 0.308 0.2 $= \frac{0.5}{3} \left[1 + 0.2 + 4(0.8 + 0.308) + 2(0.5) \right]$ 1.11 (2 d.p)) $\log_4\left(\frac{6x}{2^3}\right) = 2$. $4^2 = \frac{6x}{2}$ 42×8 = x .. x= 21.3 . a) (4-2)(4+2)70: -4 <x <4 b) 420 b2 4ac ≥0 [-(k-2)]2-4x(x+1)>0 k2-4k+4-4k-4>0 k²-8k ≥ 0 k(K-8)>0 $\therefore k \leq 0, k \geq 8$ =) i) d+ β= -4=-2, dβ=-1/2 ii) d2b2= 1/4 iii) d2+ p2= (d+ p)2- 20/3 = 4-2x-1 = 5. iv) x2- (27,82)x+ 282=0 $\therefore x^2 - 5x + \frac{1}{4} = 0.$ 1) 1) x2-12x + (-6)2 = 84-52 + (-6)2 $(x-6)^2 = 8y-16$ $(x-6)^2 = 8(y-2)$

(6,2); focus (6,4) directrix: y=0 \$7. a) i) 8 = 360 - 105 - 110 = 145" YB2 = 92 +11.52 - 2x9x11.5x cos 145 = 382.8/44732 : YB = 19.6 km (1 d.p.) ii) sin LHBY = sin 145 sin LHBY = 9 sin 195 19.6:. LHBY = 15° iii, 360'-70'-15' = 275" 6) \(\ps^2\theta (\sec^2\theta - 1) = \cos^2\theta + 7\cap 2 = cos 2 + Sin 2 * Sin 20. c) i, S = a = 65 \$ ii) 1-1+0 1- sin 2 2 0 : sin 8 = = 1 0 = 90,270 : all 8 except 90°, 270°. Q8. a) i, -5 + -5 = -10ii, 3a2-4 iii, f (3x0-4) = f(-4) = 5. 6) 4.9, 14.7, 24.5, i) T15 = a+ 14d = 4.9 + 14 = 9.8 = 142.1m \ddot{u}) $S_{15} = \frac{15}{3} \left[2 \times 4.9 + 14 \times 9.8 \right]$ = 1102.5 m c) i) A = 1200 [1.065 + 1.0652 + .. + 1.06515] = 1200 \[\frac{1.065(1.065'\frac{5}{2})}{.065}\] = \$30904.81

18. c) ii) 1200 /1.065 (1.065 2-1) = 64 000 1.065"-1 = 67000 * .065 1.065 = 4.255086072 n= log (4.255086072) n= 22.995 : n = 23 years $Q9. \quad a) \quad I = 2 \left[\tan 2\pi \right]_{\pi}^{\pi/6}$ = 2 \ tan \ \frac{\pi}{3} - tan \ \frac{\pi}{4} \] $= 2(\sqrt{3}-1)$ b) i, ii) iii, 3 solutions c) i) \ddot{u}) $V = \pi \int_{0}^{h3} (e^{x} + i)^{2} dx$ = Tr \ \(\int \) \(\e^{2x} + 2e^{x} + 1 \) dx $= \pi \int \frac{e^{2x}}{2} + 2e^{x} + x \int_{0}^{6} 3$ = $\Re \left(\frac{q}{2} + 6 + \ln 3 \right) - \left(\frac{1}{2} + 2 + 0 \right) \right]$ = 17 / 8 + 4 3] whice units Q10.a)i) BC? dime = $\sqrt{x^2+9}$ CD: dist = 6-x : time = 6-x Total time = 122+9 + 6-2